Source number detection¶
API references¶
-
doatools.estimation.source_number.
ld_stat
(l, n_sources, n_snapshots)[source]¶ Computes the sufficient statistic for source number detection in MDL/AIC.
Parameters: References
[1] H. L. Van Trees, Optimum array processing. New York: Wiley, 2002.
-
doatools.estimation.source_number.
aic
(x, n_snapshots)[source]¶ Detects source numbers using AIC.
Parameters: Notes
AIC is inconsistent, and tends to asymptotically overestimate the number of sources. However, it tends to give a higher probability of a correct decision.
References
[1] H. L. Van Trees, Optimum array processing. New York: Wiley, 2002.
-
doatools.estimation.source_number.
mdl
(x, n_snapshots)[source]¶ Detects source number using MDL.
Parameters: Notes
MDL is consistent.
References
[1] H. L. Van Trees, Optimum array processing. New York: Wiley, 2002.
-
doatools.estimation.source_number.
sorte
(x)[source]¶ Detects source number using SORTE.
- Arg:
- x: (~numpy.ndarray): A 1D vector of the eigenvalues of the covariance
- matrix in ascending order, or the covariance matrix itself.
- Refereces:
- [1] Z. He, A. Cichocke, S. Xie, and K. Choi, “Detecting the number of clusters in n-way probabilistic clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 2006-2021, Nov. 2010.